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A B S T R A C T

Assessing vertical clearance at bridges is a preliminary step in most routine bridge inspections. This information
is critical when assessing the structural integrity of bridges. Furthermore, clearance information at bridges and
other overhead assets on a highway network is also extremely important when routing oversized vehicles on a
highway network. Efficient clearance assessment makes critical information readily available to asset owners. As
a result, asset owners and transportation agencies are able to address concerns in a timely manner, which would
help them avoid prohibitive maintenance costs sustained in case of collisions. Unfortunately, manual clearance
assessment using conventional surveying tools is unsafe, time consuming, labour intensive. To overcome these
challenges, this paper proposes a novel algorithm whereby mobile LiDAR data could be used to efficiently assess
clearance at overhead objects on highways. The proposed algorithm first detects and classifies all overhead
objects on a highway segment. The clearance is then assessed at each of those objects and minimum clearance is
identified. Detection involves voxel-based segmentation of the point cloud followed by a nearest-neighbour
search to locate overhead structures. After detecting the structures and identifying their locations, points re-
presenting the same object are clustered and classify into bridges and non-bridges. Furthermore, an estimate of
the clearance at each object is also obtained. For objects of long span such as bridges, detailed clearance as-
sessment is performed. The developed algorithm was tested on three highway segments in Alberta, Canada
including a 242 km highway corridor. Testing revealed that the method was successful in detecting and clas-
sifying all overhead structures at an accuracy level of 97.8% and 96.2%, respectively. The algorithm was also
successful in accurately measuring the clearance at those structures with the differences in measurement be-
tween ground truth data and the extracted results ranging between 0.03 and 0.47%.

1. Introduction

It is common practice for Departments of Transport (DOT) to keep
inventory information about all overhead assets on a highway, in-
cluding bridges, powerlines and overhead signs. Vertical clearance in-
formation at those objects must also be obtained to ensure that
minimum clearance requirements are met. In fact, current bridge
management practice includes a routine inspection phase where a di-
agnosis of the current state of the structure is obtained [1–3]. Clearance
information is collected periodically as part of those bridge inspection
procedures since structural degradation and environmental conditions
might cause changes to minimum clearance at overhead assets on
highways. Such problems should be addressed in a timely manner.

Vertical clearance information at both bridges and powerlines is
also essential to agencies responsible for issuing overheight permits for

oversized vehicles. The efficiency and accuracy in which such in-
formation could be obtained helps significantly improve the effective-
ness of routing oversized vehicles on a highway network. In contrast,
inaccurate clearance information could result in the risk of collisions or
significant delays to the routing program and hectic maintenance costs
in cases of bridge strikes [4]. In fact, Bridge strikes are a common
problem all around the world [5]. In the US, the Federal Highway
Administration ranks damage due to bridge-vehicle collision as the
third most common cause of bridge failure [6]. Similarly, statistics from
Beijing, China, show that 20% of damage to bridges is caused by
bridges being struck by overheight vehicles [7]. In the UK, national
statistics show that a vehicle strikes a railway bridge every four and a
half hours [5]. In California, the rate of bridge strikes averages a single
strike per month [8]. Unfortunately, repairing the damage caused by
bridge-vehicle collisions can pose a significant financial burden on
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transportation agencies. For instance, the Texas Department of Trans-
portation reports that bridge strike each incident costs an average
$180,000 USD to repair [5].

Although the most significant damage is incurred when oversized
vehicles strike bridges, potential conflicts also exist between oversized
vehicles and other overhead, Vasquez [9] describes evaluating ob-
structions along a 15 mile route along which Space Shuttle was to be
transported in Los Angeles, California. Over 700 conflicts were detected
(155 of which were with powerlines). This information was then used
by utility companies plan ahead and clear the route.

In addition to helping agencies issue overheight permits to over-
sized vehicles, clearance information at bridges and powerlines is also
critical to agencies responsible for designating high-load corridors
where clearance is expected to exceed a certain margin (9m in Alberta)
along the entire highway.

Unfortunately, in current surveying practice conducting clearance
assessment is a time consuming, labour intensive and financially de-
manding exercise. This makes network-wide assessments of all over-
head assets extremely challenging, particularly in places like the
Province of Alberta in Canada where a large highway network
(31,000 km) exists with approximately 4500 bridge structures and tens
of thousands of powerlines and overhead signs [10]. In fact, the size of
the network forces officials to set priorities when managing assets on
their highways. In case of bridges, this is achieved by performing
prioritizing structures which are in a critical condition or focusing on
structures located on primary highways [11].

Considering the fact that around 40% of the bridges currently in use
in Canada and the US were built over 50 years ago [12], a significant
number of these structures are approaching critical conditions and re-
quire timely strengthening, rehabilitation, or replacement [13,14].
Unfortunately, given the limitations of existing data collection techni-
ques, assessing clearances at all those structures simultaneously is not
feasible. To increase the efficiency of vertical clearance assessment,
transportation agencies have considered the use of digital rods and
static Light Detection and Ranging (LiDAR) equipment [15]. Although
such techniques increase the accuracy of the measurements by mini-
mizing human error, site visits and road closure are still required to
perform such assessments due to the manual nature of collecting such
data.

This paper proposes a novel algorithm for the automated detection
and clearance assessment of overhead assets on highways scanned using
mobile LiDAR remote sensing technology. Mobile LiDAR datasets con-
sist of closely spaced points forming an accurate 3D model of a
highway. Unlike static terrestrial laser scanning and other conventional
surveying tools, Mobile Laser Scanning (MLS) equipment is mounted on
a vehicle which collects data while travelling down a road at highway
speeds. This causes minimal disruption to traffic and increases the ef-
ficiency of the data collection process. Time savings of days, weeks, and
months (depending on the size of the project) have all been reported in
previous research [16].

As the data collection truck travels down the highway, the laser
scanner emits millions of light beams per second at surrounding objects.
These light beams reflect back to the scanning system and based on the
reflection time and energy, intensity and positional information about
points on the object off which the bean was reflected can be computed.
The scanning process creates a 3600-virtual point cloud data of the
highway such as that seen in Fig. 1. Such point cloud data can be used
to extract traffic sign inventory and lane markings [17–19] as well as
several geometric features of highways and other elements of civil in-
frastructure [20–27]. Laser scanning data has also been used in sight
distance assessments [28,29]. MLS provides detailed data, which makes
it the most common approach to collect LiDAR data for transportation
applications [16]. Unlike traditional surveying methods, the use of
LiDAR data enables vertical clearance assessments at any point beneath
overhead structures due to the high point density of the cloud data.
Since clearances typically vary at different points beneath bridges,

using LiDAR data increases the likelihood of identifying the actual
minimum clearance under a bridge.

The algorithm proposed in this paper involves automating the de-
tection of overhead objects on a highway segment and identification of
clearance information for each of the objects in an efficient and accu-
rate manner, this provides transportation agencies with information
that could help them reduce the risk of potential bridge strikes through
timely intervention to address structural imperfections and though the
efficient routing of oversized vehicles on the highway network. Since
incorporating new technologies into protocols requires validation, the
accuracy and repeatability of the algorithms was tested on three dif-
ferent highway segments including a 242 km corridor.

2. Previous work

Various techniques have been used to conduct vertical clearance
assessments on highways. Although some municipalities still use
manual methods, such as theodolites and total stations, other digitized
devices have recently gained popularity. For instance, many DOTs use
digital measuring rods and electronic measuring devices [30], similarly,
clearance assessment using photolog data has also been previously at-
tempted [31]. Terrestrial LiDAR scanning is another technique which
has been used to assess clearance at bridges with the aim of minimizing
human error associated with conventional surveying tools.

In a paper by Liu, et al. [15], static terrestrial LiDAR scans of a
bridge deck and the ground points beneath the deck were used to assess
vertical clearance. The authors developed an algorithm where scanned
ground points are automatically matched to bridge deck points which
fall within a certain margin of the vertical plane that is perpendicular to
the ground surface. The algorithm loops through all points until all
points on the ground surface are matched to points on the bridge deck.

Riveiro, et al. [2] proposed a method by which photogrammetric
images could be used to conduct clearance assessment at bridges. After
converting the images into a 3D point cloud, the authors propose as-
sessing the clearance based on a 3D curve fitting algorithm. The pro-
cedure involves using points on the pavement surface to create a 3D
plane that fits the road surface, where the normal vector to the plane
specifies the vertical direction from the roads surface. The vector along
the bridge beam's primary axis and the normal vector of the roads
surface are used to define a new plane and clearance is measured within
that plane. The proposed method was tested on a bridge in New Mexico,
USA. To test the accuracy of the proposed method, the authors mea-
sured clearance at multiple points below the test bridge. For each point
the clearance measurement was obtained using both (1) the proposed
photogrammetric technique, and (2) topographical data obtained in
field measurements. The difference between the two measurements at
each point was then computed and averaged across all points. The
average difference was 0.008m.

In general, digitized vertical clearance assessment techniques such
as static LiDAR scanning increase the likelihood of determining the
actual minimum clearance beneath a bridge. However, due to the static
nature of such tools, disruptions to traffic and safety concerns are
common occurrences which still exist. Moreover, network-level analysis
(i.e. assessing a large selection of bridges on the network efficiently) is
still not possible since such techniques involve conducting site visits
and scanning each bridge in the network individually as well as
manually.

In a recent paper, Puente, et al. [32], used mobile LiDAR data in the
assessment of vertical clearance in tunnels. The authors propose a semi-
automated algorithm where cross sections along the trajectory of the
tunnel are first extracted and then used to measure the clearance. The
method involves using lane markings to define the edges of the travel
lanes at which the clearance must be evaluated. The edges are then
matched with the points at the roof of the tunnel and the cross section
of the tunnel is defined using a convex hull before measuring the
clearance. The results were extremely encouraging, with relative error
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between ground truth and detected clearance not exceeding 1% for
most cross sections. It is worth pointing out that the algorithm was only
used to assess a portion of the point cloud data available, with the
authors citing loading time as the main reason why the full point cloud
was not used to test the algorithm.

As evident from the review, not many studies have attempted
measuring vertical clearance of bridges using mobile LiDAR data.
Furthermore, to the best of the authors' knowledge, no study, to date,
has attempted the automated detection (i.e. inventory) of bridges on
highways. Moreover, previous research seems limited to using LiDAR
data in assessing clearance of bridges only, with no attention given to
other overhead objects such as the power lines and overhead signs as
seen in Fig. 2. To address the aforementioned gaps in the literature, this
paper develops an automated algorithm which can detect and measure
vertical clearance of all overhead objects using mobile LiDAR data.

3. Extraction procedure

The technique proposed for extracting vertical clearance informa-
tion from LiDAR data involves detecting and classifying overhead
structures while obtaining an estimate of their vertical clearance. After
that a detailed assessment of vertical clearance at the detected overhead
objects is performed. The next few paragraphs provide detailed de-
scription of the different steps in extraction procedure. Moreover, the
workflow is also summarized in the Fig. 3.

3.1. Overhead structure detection

Detection of overhead structures before measuring their clearance is
essential when a network-wide assessment of vertical clearance is de-
sired or when agencies are only interested in inventorying the number
of overhead structures that exist on a highway segment. The aim is to
minimize the need for user input and to automatically provide in-
formation about of the locations where overhead structures exist. Once
this is achieved, a detailed assessment of vertical clearance can be

performed if desired.

3.1.1. Trajectory definition
The first step of the detection process involves defining points

parallel to the roads axis which trace the roads trajectory and cover the
entire road segment. In case of this study, the set of points tracing the
path of the data collection truck were used. These points were obtained
by filtering the LiDAR point cloud based on the scanner angle in
MATLAB. Specifically, points that fall in the Nadir plane of the laser
scanner were filtered out of the LiDAR point cloud to represent the
points parallel to the road's axis. It is worth noting here that the tra-
jectory points extracted in this stage do not need to trace the centreline
of the road or the lane. The only requirement is that the points run
parallel to the road's axis and extend throughout the entire segment.
The location of the trajectory points is only significant if the detection
of objects that overhang from the side of the road is desired. This in-
cludes overhead signs that only extend into a single lane and do not
span across the entire road. If the detection of such an object is desired,
it is recommended that the trajectory points are offset into the desired
lane before running the remainder of the detection algorithm.

3.1.2. Point cloud segmentation
Once the trajectory points are defined, the next step is to segment

the point cloud whereby points that potentially represent overhead
objects are filtered out of the remainder of the LiDAR point cloud. In
brief, the segmentation procedure involves voxelisation of the LiDAR
point cloud and dynamically filtering points that potentially represent
overhead objects from the remainder of the point cloud. Voxelisation is
the process of discretizing the LiDAR point cloud into three dimensional
voxels of a certain size, similar to two-dimensional pixels in a normal
two-dimensional image. Interested readers are referred to [33,34] for
more information about the voxelization process.

The dimensions of the voxel are user defined. For best overall re-
sults, it is recommended that voxel dimensions be defined based on the
laser scanner properties. Since the data scanned in this study was

Fig. 1. Point cloud highway.
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collected in scanlines that are approximately 20 cm apart, a similar cell
size for voxelization was used. This choice also enables efficient crea-
tion of 3D images within the limits of 16GB of RAM.

After discretizing the LiDAR point cloud into a 3D voxel grid, the
data was segmented based on the elevation of each point from the road
surface. This was done to isolate points representing potential overhead
objects from the remainder of the point cloud.

To account for variations in the vertical alignment along the
highway, the threshold was applied dynamically (i.e. a different re-
ference point on the pavement surface was used to classify points de-
pending on where the point is located along the road segment). The
reference point for each point in the point cloud was the closest voxel in
the trajectory voxel chain shown in Fig. 4.

To achieve this, a nearest neighbour search was conducted for each
point in the point cloud. Once the closest voxel for every point is
identified, the elevation difference between each point and that tra-
jectory voxel is then computed. Points that have an elevation difference
which is more than a specific threshold are then classified as potential
overhead object candidates and are retained for the object detection
step in Section 3.1.3. The classification threshold is user defined de-
pending on where the split is desired. A 3m threshold was used in this
paper since this retains all points representing overhead structures
while minimizing the search space for the object-detection step as
evident in Fig. 5.

3.1.3. Object detection
The third step of the detection process involves matching the tra-

jectory data with the overhead object candidate points obtained in the
previous step to locate the overhead structures. At every point along the
defined trajectory, a nearest neighbour search algorithm was used to
locate any overhead structures above the trajectory point [35]. As

displayed in Fig. 6, the aim is to search for the nearest overhead point to
the trajectory point on the ground.

The MATLAB algorithm loops through all trajectory points (pins
shown in Fig. 6) and returns a list of points for which an overhead
match was found. For instance, for the dashed arrow in Fig. 6, no
overhead points exist above the trajectory points, therefore, no over-
head object is detected. However, for the solid line, overhead points
representing a power line exist above the trajectory pin and hence, the
code identifies this as a location where an overhead structure does exist.
The code also computes the difference in elevation between the over-
head point and the point on the road's surface (i.e. the trajectory point).
This estimate is used as a preliminary estimate of the clearance at that
location.

For overhead objects which have a limited thickness, and as a result,
a low point density (along the road's axis) (< 3), an additional check is
conducted to ensure that the detected overhead points are indeed part
of an overhead object and not random points representing noise. This is
done by assessing the existence of points within the lateral vicinity of
the detected point. Specifically, a search is conducted for points which
were closest to the detected overhead point in the lateral direction (i.e.
the direction perpendicular to the road's axis), as shown in Fig. 7.

The average distance from cluster of 10 nearest points, pn to the
point pi is determined and is assessed follows.

< →
≥ →

Y m
Y m

1 is an overhead object
1 is noise

i

i (5)

where Yi is the mean distance from the 10 nearest neighbouring points
pn to the original overhead point pi. It is assumed here that if the points
are scattered>1m away then it is highly unlikely that these points
belong to the same overhead object and, hence, the detected point does
not represent an overhead object.

(a) Overhead Sign

(b) Powerline Cable

Fig. 2. Overhead objects.
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The reason a 1m and 10 point threshold was chosen is because the
minimum point density of data used in this study is approximately 100
points per square meter. Assuming the points are evenly distributed
along either end of the square meter, this translates to approximately
10pts/m. It is worth noting here that sensitivity analysis was conducted
for the distance and point density thresholds and it was found that these
thresholds did not impact detection accuracy. It is also worth empha-
sizing that this is an additional filter that is only applied to help dis-
tinguish overhead objects with a low point density from noise.

3.1.4. Clustering & classification
To identify the number of overhead structures determined on a

segment, trajectory points along the roads surface for which a match
was found are clustered using the DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) clustering algorithm [36].

The DBSCAN algorithm is a density-based algorithm that works on
grouping points based on proximity (Ɛ) and hit count. The proximity
measure defines how close multiple points within a cluster are to one
another. Hit count is a measure of the minimum number of points

required for those points to be considered a cluster. If the distance
between points exceeds the minimum proximity (Ɛ) and the number of
points exceeds the minimum hit count, it is likely that these points do
not represent a cluster. In this paper, a minimum hit count of 4 and a
proximity (Ɛ) of 1 m were used to group of points into clusters, or in this
case, an overhead object.

DBSCAN was selected for two main reasons. (i) DBSCAN does not
require specifying the number of clusters in advance which is extremely
important for this application since we assume the number of overhead
objects is unknown. (ii) DBSCAN has the ability to account for noise and
does not require that all points are assigned to clusters, which means
that outliers are ignored. This helps improve the accuracy of the de-
tection and classification process by removing erroneous points.

Classification of clusters into bridges and non-bridges is done by
applying two different statistical filters that are related to the density
and spread of points in a cluster. Before discussing the filters, it is worth
noting that objects were only classified into bridges and non-bridges
since this is the most important distinction for transportation agencies
interested in obtaining clearance information for bridge inspections. It
is recommended that future research explores further classification of
non-bridges into specific objects such as powerlines and vegetation.
Such classification although possible is out of the scope of this paper.

Due to the wide span on bridges, point density of clusters detected
along their cross sections is relatively high compared to other overhead
objects such as powerlines. As a result, it is expected that points along a
bridge's cross section in the x-y plane would fit very well to a linear
model as evident in Fig. 8. In contrast the sparse and random nature of
points along a powerline's cross section means that they would gen-
erally fit poorly to a linear model. Therefore, the first classification
filter is based on how well the points in a cluster fit a linear model in the
x-y plane. For objects where model fit is high (i.e. R-squared > 0.7)
[37], these objects are bridge candidates however, they are subject to a
second filter before they could be classified as bridges.

The second classification filter is related to the geometric distribu-
tion of the residuals of the regression model. As evident in Fig. 9, the
high density of points detected along a bridge's cross sections results in
the probability density plot of the residuals peaking at the mean of zero.
The Kurtosis, which is also known as the 4th central moment around
the mean, is used to assess the peak in the residual density plot. Kurtosis
parameter (γ) can be quantified as follows:

⎜ ⎟
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∑ −
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=
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x X
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4

1
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(6)

where, xi is the residual of point (i), X is the mean of all residuals, n
denotes the number of observations in the cluster.

A sample with a parameter= 3 is considered normally distributed.
If γ < 3 then the sample is a leptokurtic (peaked) sample, on the other
hand, if γ > 3 then the sample is a platykurtic (flat) sample [38].
Therefore, clusters with a high linear model fit and a high kurtosis
(γ > 3) are considered bridge clusters.

Finally, for all clusters which are determined to be overhead objects,
the algorithm returns a clearance measurement at the point of detec-
tion. Although this measurement does not cover the all spans of the
overhead object, it gives the user an estimate of the vertical clearance of
the object in question.

Fig. 3. Procedure workflow.

Fig. 4. Side view of the trajectory voxel chain tracing the road's axis along pavement surface.
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3.2. Detailed clearance assessment

To obtain a more detailed estimate of clearance on bridge structures
where vertical clearance could vary at different points along the
bridge's span, a detailed clearance assessment is recommended. The
detailed assessment involves replicating the trajectory points used in
the overhead object detection across the width of the road and
matching the new set of trajectory points with points on the bridge
structure using nearest neighbour search. As seen in Fig. 10, this

guarantees accurate clearance measurements when the pavement sur-
face has a high cross slope or when then road has a high grade.

Since different agencies require clearance measurements at different
locations below a bridge structure, the specific points at which the
clearance is assessed are left for the user to specify. In the example
presented as part of the case study (Section 5.2.2), clearance is assessed
in different lanes, on different approaches, and in shoulder lanes, since
this is the information that is typically required by Alberta Transpor-
tation in bridge inspections conducted in the province.

(a) Full LiDAR Road Segment
(b) Highlighted Overhead-Object Candidate

Points 

Fig. 5. Point cloud segmentation.

Fig. 6. Overhead object detection (No overhead points exist above the trajectory points at the dashed arrow upstream the segment, therefore, no overhead object is
detected. For the solid line overhead points representing a power line exist above the trajectory pin and hence, an overhead object is detected).

Fig. 7. Assessing the existence of other overhead points within the vicinity of the detected overhead point (Circled).
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(a) Detected Points on Bridge 

(b) Detected Points on a Powerline 
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Fig. 8. Points detected on overhead object.

Fig. 9. Histogram of residuals (bridge vs non-bridge).
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4. Case study

The developed algorithm was tested on two different highways in
the Province of Alberta, Canada. The two segments were both divided
highway segments which included a variety of overhead structures in-
cluding bridges, powerlines, cables and overhead signs. The segments
had differing levels of vegetation and tree density as well as different
horizontal and vertical alignments. The next few paragraphs provide
information about the data collection process along with some details
about the two highways on which the proposed algorithm was tested.

4.1. LiDAR data collection

The LiDAR data used in this study was collected by Alberta
Transportation in surveys conducted on multiple highways across the
province. In mobile laser scanning (MLS) a data collection vehicle is
mounted with a laser scanning system. The laser scanner can be
mounted to any vehicle with a roof rack. The vehicle then travels
highway corridors at highway speeds of up to 100 km/h to collect the
data creating a 360° point cloud of the road's environment. Unlike static
terrestrial scans where a significant amount of time is required to set up
scanning equipment and relocating from one bridge to another, the fact
that mobile LiDAR can be collected while travelling at highway speeds
helps improve the efficiency of the data collection process. It also
minimizes the disruption caused to traffic since road closure is not re-
quired when mobile LiDAR is collected.

The MLS system used to collect data for this study was the RIEGL
VMX-450. Among other components, the RIEGL VMX-450 system is
equipped with two VQ-450 scanners and IMU/GNSS units (Inertial
Measurement Unit/Global Navigation Satellite System). The laser
scanners are symmetrically configured on the left and right sides,
pointing toward the rear of the vehicle at a heading angle of approxi-
mately 145°. The VQ-450 scanner has a scan rate of up to 1.1 million
points per second and a scan speed of 400 lines per second, a precision
of 5mm and an accuracy of 8mm [39]. The density of the points on a
scanned object depends on the range, and the speed of the data col-
lection truck. Provincial surveys conducted at 90 km/h result in LiDAR
point densities on the pavement surface of 100–1000 points/m2 [40].

Data collected along a given highway is saved in multiple .LAS files
with each file representing a certain segment along the highway. Due to
the high point density of the data, the size of the 4 km segment file
could reach over 500MB. The data considered in this paper was col-
lected on the three different segments shown in Fig. 11.

Data considered in this paper was collected on three different
highways in Alberta, Canada. Clearance information on each of the
three highways was obtained using the proposed method. For two of the
test highways, the extracted information was compared to clearance
information posted at bridges. For a short segment on the third
highway, the extracted information was compared to clearance in-
formation obtained in bridge inspections conducted by Alberta
Transportation (Alberta's Department of Transport).

4.1.1. Highway 1
The portion of Highway 1 (also known as the Trans-Canada

Highway) considered in the analysis extends a length of 4 km and lies in
the western part of the Province of Alberta, Canada. The segment is part
of a 4-lane divided highway located west of the City of Calgary. The
speed limit on the segment is 110 km/h and it is highly travelled due to
its proximity to the Banff National Park. The segment also has a high
density of trees and vegetation on either side of the road as seen in
Fig. 11a. In addition, there is physical separation of the two travel
approaches. The type of median varies along the segment (depressed vs.
raised) as does the horizontal alignment of the segment. Two inter-
changes exist on the segment. The point cloud file of this segment
consisted of over 17 million points. Overhead structures on this seg-
ment included two bridges in addition to several power lines and
overhead signs.

4.1.2. Highway 14
The Highway 14 segment extended a length of 4 km. This segment

was also a 4-lane divided rural road. The highway is located southeast
of the City of Edmonton in Alberta, Canada. The travel approaches are
separated by a depressed median with moderate vegetation and tree
density on the side of the road as seen in Fig. 11b. It is worth noting that
part of this segment has travel approaches which are completely se-
parated as the highway merges into the Anthony Henday drive which is
a major ring-road circulating the City of Edmonton. The LiDAR point
cloud file for this segment consisted of 31.7 million points. The speed
limit on the road is 100 km/h. Four different bridges exist on the ana-
lyzed portion of this segment as well as a number of power lines.

4.1.3. Highway 2 (corridor assessment)
The section of Highway 2 (also known as the Queen Elizabeth II

Highway) considered in the analysis lies in the central part of the
Province of Alberta. The segment is part of a 4-lane divided highway
located in between the cities of Calgary and Edmonton. The speed limit
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Fig. 10. Detailed clearance assessment highway 1 Bridge B.
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on the segment is 110 km/h and it is highly travelled as it is the main
transportation route connecting Northern and Southern Alberta. The
segment is primarily bordered by low vegetation as seen in Fig. 11c. In
addition, there is physical separation of the two travel approaches. The
median varies along the segment (depressed vs. raised) as does the
horizontal alignment of the segment. This Highway was used for two
purposes, the proposed algorithm was used to estimate clearance and
detect overhead objects for the entire highway corridor which extended
a length of 242 km. The 242-km segment consists of over 1 billion
points resulting in 41 GB of raw LiDAR data. For one bridge along the
highway corridor clearance information collected by Alberta Trans-
portation in a Bridge inspection report was available, hence, this in-
formation was used to validate the clearance assessments obtained
using the proposed algorithm.

4.2. Result assessment metrics

To numerically assess the validity of the results, three metrics
(precision, detection rate, and accuracy) were calculated. The metrics
were calculated as follows:

=
+

TP
TP FP

Precision
(9)

=
+
TP

TP FN
Detection Rate

(10)

= +
+ + +

TP TN
TP FN FP TN

Accuracy
(11)

where, TP and TN denote the number of true positives and the true
negatives. FP denotes the number of false positives and FN denotes the
number of false negatives.

Accuracy measures how effective the algorithm is in the valid clas-
sification of both true positives and true negatives, this measure is also
known as quality and provides a compound performance metric that
balances detection rate and precision [41]. Detection rate, also known as
completeness, measures how effective the algorithm is in the valid
identification of true positives only. Finally, Precision, also known as
correctness, measures how successful the algorithm is in applying the
classification filters.

5. Results and discussion

5.1. Overhead object detection

For further testing and validation of the repeatability of the pro-
posed method. The algorithm was tested on LiDAR data collected on
Highways 1, 2, and 14. On Highway 1 and 14, testing was conducted on
short subsegments of the highways (around 4 km each), whereas for
Highway 2 testing was carried out on the entire highway corridor that
extended 242 km between Alberta's most populous cities Edmonton and
Calgary.

(a) Highway 1 (b) Highway 14

(c) Highway 2 Corridor

Fig. 11. Point cloud data at test highways.
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5.1.1. Short test segments
Figs. 12 and 13 show the results of the overhead structure detection

performed on both Highway 1 and 14, respectively. For each highway,
two different figures are displayed. The top figures (Figs. 12a and 13a)
represents a plot of the detected clusters and the bottom figures
(Figs. 12b and 13b) represents a plan view of the point cloud data. The
horizontal axis on the plots represents the Universal Transverse Mer-
cator (UTM) easting coordinates while the vertical axis represents the
UTM northing coordinates. Each diamond on the plots represents a
cluster of points which, in turn, represent a single overhead structure. If
the cluster on Figs. 12a and 13a are traced down to Figs. 12b and 13b
the overhead object can be seen on the plan view of the LiDAR
highway.

Tables 1 and 2 also show the overhead structure detection results for
Highways 1 and 14, respectively. For each of the detected clusters, the
tables show the cluster ID, the overhead object each cluster represents,
the coordinates of the object, the minimum elevation and the points per
cluster.

On the analyzed segment of Highway 1, four different overhead
structures existed, namely; two bridges and two powerlines. On
Highway 14, there were six different overhead objects on the analyzed

segment - two pairs of bridges and two powerlines. As evident in Tables
1, 3 and 4, the algorithm successfully detected all overhead structures
on all three test segments.

5.1.2. Long highway corridor
To demonstrate the repeatability of the proposed method and its

efficiency in a large-scale assessment, the algorithm was used to detect
overhead objects along the Highway 2 Corridor in central Alberta. The
algorithm was successful in detecting all 152 objects that existed on the
analyzed segment without any False Positives. This included single
cable powerlines, multi-cable powerlines, overhead signs, and bridges.
Although no false positives were detected (i.e. all 152 objects were
accurately detected), the detection process did result in two false ne-
gatives (i.e. overhead objects that were not detected). These were a
virtual weigh station cantilever and an overhead sign that extended
onto a single lane of the highway. It is worth noting here that detecting
those objects is possible by simply offsetting the trajectory defined in
Section 3.1.1 to the lane of interest.

In addition to the accurate detection of objects, the algorithm was
also successful in accurately classifying overhead objects into bridges
and non-bridges. Out of 32 bridge structures on the 242 km of the

(a) Detection Results

(b) Plan view of LiDAR segment

Fig. 12. Overhead structures detected on highway 1.
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highway, the classification process yielded 4 false negatives and 2 false
positives. Two of the false negatives (i.e. overhead objects that were
classified into non-bridges despite representing bridge structure) were
incomplete bridges that were split between two LiDAR segments due to
the way the LAS files were stored. This causes the number of points on
the bridge structure to get split between two sections. Another false

negative was a pedestrian footbridge, which did not have a span as wide
as traffic bridges. As for the false positives, one of those was a powerline
that consisted of over 10 cables, which resulted in a point density si-
milar to that of a bridge. Although these powerlines are rare, they could
be distinguished from bridges due to the high clearance at those objects
(typically> 11m).

(a) Detection Results

(b) Plan view of LiDAR segment

Fig. 13. Overhead structures detected on highway 1.

Table 1
Overhead object detection results (Highway 1).

Cluster ID Object Eastings Northings Min Clearance Points per
cluster

1 Bridge A 5,665,281 612,324.3 5.56 79
3 Cable A 5,664,144 613,526.5 6.91 24
4 Cable B 5,663,579 613,972.6 6.91 15
5 Bridge B 5,663,332 614,171.5 5.46 66

Table 2
Overhead object detection results (Highway 14).

Cluster ID Object Eastings Northings Clearance Points per cluster

1 Cable 344,291.6 5,926,148 15.77 45
2 Bridge A1 344,345.6 5,925,679 6.03 154
3 Bridge A2 344,380.2 5,925,623 6.65 146
4 Bridge B1 344,869.3 5,924,822 5.76 158
5 Bridge B2 344,895.9 5,924,779 5.85 173
6 Cable 346,752.7 5,924,438 14.3 33
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To numerically assess the validity of the results, three metrics
(precision, detection rate, and accuracy) were calculated. These metrics
were computed to assess the validity of both the detection process (i.e.
the accuracy of the proposed algorithm in detecting all overhead ob-
jects on the test highway), and the classification process (i.e. the ability
of the proposed method in accurately classifying detected overhead
objects into bridges and non-bridges). The metrics for detection and
classification are presented in Table 3.

The high percentages in table, combined with the fact that these
results were obtained on a long highway corridor illustrate the ro-
bustness of the proposed method in detecting and classifying overhead
objects. The results show the ability of the algorithm in accurately
detecting and classifying overhead objects regardless of the length of
the highway, or the type of overhead objects that exist on the highway.

5.2. Clearance assessment

5.2.1. Preliminary clearance estimate
As already noted, a preliminary estimate for clearance at each

overhead object is obtained as part of the detection process described in
Section 3.1.3. The preliminary clearance estimates obtained on the
Highway 1 and Highway 14 test segments are presented in Tables 1 and
2 are first explored. For Highway 1, the minimum bridge clearance
based on the detection results is 5.56m and 5.46m for Bridges A and B,
respectively. On Highway 14, the minimum clearance was 5.76m and
5.85m for Bridges A1 and A2 and 6.65m and 6.03m for the two
Bridges B1 and B2.

The posted minimum clearance at the analyzed bridges, as shown in

Table 5 (columns 6) ranges from 5.2 m to 6.5m. It is worth noting that
Alberta Transportation require that the posted minimum clearance is
0.1-m less than the minimum height measured between the lowest
point on the overhead structure and the surface of the roadway. After
subtracting the 0.1 m tolerance, the number is also rounded down to the
nearest 0.1 m. This means that if the minimum clearance measured at a
bridge is 5.32m, the posted minimum clearance beneath the bridge
should be 5.2m.

After comparing the minimum clearance based on the posted in-
formation to that obtained from the detection, the results reveal that
the percentage difference ranges from 0.69 to 3% with an average
difference of 0.92% for all bridges. This indicates that even the clear-
ance estimate obtained in the detection process is a good representation
of the measured clearance at the bridge.

With regards to the power lines, the minimum clearances are also
summarized in Tables 1 and 2. Clearance information about those ob-
jects is not known and not posted, however, clearance at powerlines
typically ranges from 6 to 20m depending on the voltage being carried
in the cable [42]. This was indeed the case for all the powerlines that
were detected in this paper.

5.2.2. Detailed clearance assessment
As highlighted in the last few paragraphs, the detection process

proposed in this paper yields accurate estimates of clearance informa-
tion at all the detected objects. These measurements eliminate the
likelihood of human error associated with traditional surveying prac-
tice, thus, resulting in more accuracy. Nonetheless, if the absolute
minimum clearance across the span of an overhead object is desired, a
detailed clearance assessment is still required. Accordingly, the detailed
assessment was performed at all the bridges detected in this paper due
to their long span.

5.2.2.1. Clearance information validation. Before the detailed clearance
assessment was conducted on Highway 1 and Highway 14, the
clearance assessment procedure was tested along a subsegment of the
Highway 2 corridor where ground truth clearance measurements were
available. This was a 4 km segment that lies north of the town of
Lacombe. The point cloud file for this segment consisted of 29.5 million
points. Only one bridge existed on the analyzed segment, however, a
power lines and an overhead sign were also present. For verification
purposes, the results of the detailed clearance assessment obtained
using the proposed method were compared to the information obtained
by Alberta Transportation in bridge inspections. Table 4 shows the
results of the comparison.

The differences in vertical clearance between the values measured
in bridge inspection and those obtained using the proposed procedure
suggest that the methodology is accurate in determining the vertical
clearance. The differences in clearance range from 0.4 to 3.1 cm, which
could be caused by human error or potential imperfections when con-
ducting manual field measurements. These differences translate to
percent differences that range from 0.03 to 0.47%, which indicates a
high level of accuracy.

Table 3
Result validity assessment.

Metric Detection of overhead objects Classification of objects

Precision (%) 100 93.8
Detection rate (%) 98.7 88.2
Accuracy (%) 98.7 96.3

Table 4
Clearance verification results.

Lane
positiona

Span
direction/
numberb

Clearance
measured
during bridge
inspection

Clearance
obtained using
proposed
method

Difference (cm)

L1 S3N 6.41 6.396 1.4
LS S3N 6.65 6.619 3.1
RS S3N 6.17 6.155 1.5
L1 S3S 6.4 6.396 0.4
LS S3S 6.65 6.619 3.1
RS S3S 6.13 6.132 −0.2

a L: Left, R: Right, S:Shoulder.
b For span orientation, letter indicates span direction and number further

specifies the location on the bridge, for further information see Chapter 7 of
Alberta Transportation's Bridge Inspection Manual [43].

Table 5
Clearance assessment results.

LiDAR detailed assessment Conventional measure Difference in clearance

Average Min 10% Min 5% Min Posted Calculated Posted – detailed clearance measure (cm)

HWY 1 Bridge A 6.31 5.54 5.49 5.45 5.30 5.40 15.30
HWY 1 Bridge B 6.33 5.61 5.58 5.52 5.30 5.40 21.70
HWY 14 Bridge A1 7.51 6.10 6.05 6.03 5.90 6.00 13.20
HWY 14 Bridge A2 8.10 6.73 6.67 6.65 6.50 6.60 15.10
HWY 14 Bridge B1 7.07 5.78 5.77 5.74 5.70 5.80 4.00
HWY 14 Bridge B2 7.16 5.85 5.84 5.79 5.70 5.80 8.70
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5.2.2.2. Clearance compared to posted clearance information. The results
of the detailed clearance assessment on highways 1 and 14 are shown in
Table 5. For these bridges ground truth information was not available
since no bridge inspections took place at those locations, however, the
results were compared to the posted clearance information. Table 5
shows the average clearance obtained from multiple points across each
bridge's deck, the average of the minimum 10%, the average of the
minimum 5% and the absolute minimum clearance value.

As evident by the difference between the average clearance (column
2) and the absolute minimum clearance (column 5) in Table 5, the
clearance observations vary significantly beneath the bridges. The
lower deck of the bridge contains steel girders which cause the observed
variations in the vertical clearance, as seen in Fig. 14. The variation is
also due to the slopes of the roadway or the overpass itself. Such var-
iations highlight the importance of obtaining multiple clearance ob-
servations below a bridge's deck to increase the likelihood of finding the
‘true’ minimum clearance.

The actual minimum clearance obtained using the LiDAR assess-
ment on all highways was conservative (i.e. the posted clearance was
still less than the actual minimum obtained from the LiDAR analysis).
Nonetheless, the differences between the absolute minimum clearance
obtained at some of the bridges and the minimum clearance sign posted
at those bridges was relatively close. For instance, at Bridge B1 on
Highway 14 the posted clearance was only 4 cm lower than the absolute
minimum obtained in the assessment procedure. While such a differ-
ence might be acceptable, it shows that DOTs must be extra cautions
when posting minimum clearance signs.

As already noted in the paper, AT requires that a 10 cm margin of
safety is used when deciding on the minimum clearance that must be
posted at a particular bridge. Accordingly, the posted clearance is ex-
pected to be 10 to 15 cm less than the absolute minimum clearance
measured at the bridge. While this is the case for most of the bridges

assessed in this paper, the fact that this is not the case for Bridges B1
and B2 on Highway 14 indicates that the posted clearance was based on
a clearance value which was not the absolute minimum at the bridge.

This finding demonstrates the importance of performing a detailed
assessment of clearance before posting clearance signs as an error of 5
to 10 cm in the posted clearance might be the difference between a
truck driving smoothly beneath a bridge and a collision costing hun-
dreds of thousands of dollars in repairs.

The assessment also shows that if it is evident that on multiple
bridges the posted clearance is not based on the absolute minimum, due
to limitations in conventional clearance measurement tool, DOT's still
using those tools might need to revise the margin of error used when
posting minimum clearance signs.

5.3. Processing time

The process proposed in this study for overhead object detection,
classification and clearance assessment takes approximately 1min/km
for a Desktop PC with Intel i7 CPU and 16 GB RAM. This could vary
depending on the number of overhead objects on a segment, however,
the estimate is based on analysis conducted in this study, which in-
cludes 242 km of the Highway 2 corridor (the longest and busiest
highway in the province of Alberta) where 152 overhead objects exist
(0.62 objects per km). It has been reported in previous research, based
on data from Washington State DOT, that manual clearance assessment
of a single bridge can take up to 1.5 h, which excludes relocation time
from one structure to another, lodging time and expenses for surveying
crew [8]. Therefore, the proposed method creates significant time
savings for agencies interested in assessing clearance information along
highways. Furthermore, the fact that the same LiDAR dataset could be
used for multiple applications helps save time spent in field visits col-
lecting other information about road infrastructure [44].
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Fig. 14. Steel girders below bridge deck.
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6. Conclusions and recommendations

This study provides a novel algorithm which can be used to effi-
ciently assess vertical clearance on a highway network using LiDAR
point cloud data. The algorithm involves automatically detecting,
classifying and assessing the vertical clearance at all overhead objects
on a highway. The proposed technique provides an exhaustive and
accurate method for the assessment of vertical clearance in much safer
conditions than existing techniques.

The proposed algorithm was tested using data collected on three
highways in the Province of Alberta, Canada including a 242 km
highway corridor. The results of the analysis showed that the algorithm
was successful in detecting the vast majority of overhead objects on all
highways. This included the detection of powerline cables, overhead
signs and bridges. Furthermore, comparison of the clearance informa-
tion obtained using the proposed method to those documented in
bridge inspection reports revealed that the proposed method provides
an extremely accurate clearance measurement, with percent differences
of< 0.47%.

One limitation of the proposed method lies in its inability to detect
powerlines with a very low point density. Although the algorithm
checks LiDAR points within the lateral vicinity of powerlines of low
density (Section 3.1.3), there are some instances where even lateral
point density (i.e. the point density across the length of the powerline)
is sparse. This makes it difficult to distinguish such objects from noise in
the data. Although this did not significantly impact the quality of the
results, future studies might need to consider region growing techni-
ques to overcome the issue of sparse point density along those power
lines. Another challenge which may hinder the assessment process in
some cases is the existence of incomplete overhead objects. This is ei-
ther caused by object occlusion during data collection (which is highly
unlikely since the main source of occlusion is typically vehicles tra-
velling on the highway which cannot obstruct overhead objects due to
the difference in height) or LiDAR scan segmentation. LiDAR data
collected on a highway is often broken down into several subsegments
of manageable size. Breaking down those segments sometimes occurs at
interchanges and results in the bridges at those interchanges getting
split into two segments. This impacts the accuracy of the classification
process of the detected overhead asset. Therefore, it is recommended
that such segmentation is avoided if the datasets are to be used for
clearance assessment.

Despite these challenges, this paper demonstrates that the devel-
oped algorithm is of great value for transportation agencies looking to
automatically inventory and classify overhead objects on an entire
highway network with minimal effort. The efficiency with which
clearance can be assessed using the proposed algorithm makes it ex-
tremely valuable when network-level assessment of clearance is de-
sired. Bridge management agencies can also use the extracted in-
formation as part of their routine inspection of bridges to help manage
their rehabilitation and maintenance programs. The extracted in-
formation could help agencies prioritize structures with significant
clearance problems which would lead to agencies addressing integrity
concerns in a timely manner before irreversible damage occurs or safety
problems arise. The proposed detailed clearance assessment of bridges
also increases the likelihood of detecting the absolute minimum clear-
ance beneath a structure, which is not always possible using manual
procedures. As evident in the paper, the absolute minimum clearance
might be relatively close to the posted clearance in some cases. If this is
observed at multiple locations on a highway network, agencies might
consider updating design codes to incorporate higher margins of safety
when posting clearance information based on manually measured
clearance estimates.
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