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A Voxel-Based Method for Automated
Detection and Mapping of Light Poles on
Rural Highways using LiDAR Data

Suliman A. Gargoum', James C. Koch', and Karim El-Basyouny'

Abstract

The number of light poles and their position (in terms of density and offset off the roadside) have significant impacts on the
safe operation of highways. In current practice, inventory of such information is performed in periodic site visits, which are
tedious and time consuming. This makes inventory and health monitoring of poles at a network level extremely challenging.
To relieve the burden associated with manual inventory of poles, this paper proposes a novel algorithm which can automati-
cally obtain such information from remotely sensing data. The proposed algorithm works by first tiling point cloud data col-
lected using light detection and ranging (LIDAR) technology into manageable data tiles of fixed dimensions. The data are
voxelized and attributes for each data voxel are calculated to classify them into ground and nonground points. Connected
components labeling is then used to perform 3D clustering of the data voxels. Further clustering is performed using a
density-based clustering to combine connected components of the same object. The final step involves classifying different
objects into poles and non-poles based on a set of decision rules related to the geometric properties of the clusters. The
proposed algorithm was tested on a 4 km rural highway segment in Alberta, Canada, which had substantial variation in its ver-
tical alignment. The algorithm was accurate in detecting nonground objects, including poles. Moreover, the results also high-
light the importance of considering the length of the highway and its terrain when detecting nonground objects from LiDAR.

Periodic assessment of road infrastructure is essential for
safe and efficient operation of roads. Whether it is street-
light poles, traffic signs, bridges, or pavement surface, all
these assets must be routinely assessed to ensure they
meet the necessary standards throughout the road’s ser-
vice life. The density of light poles, their dimensions, and
placement have significant impact on the safety of a high-
way. In fact, the relationship between the presence of
light poles on a highway and safety is a complex one. For
instance, while increasing the light pole density may help
reduce some types of night-time crashes as a result of the
improved visibility, the greater density could also result
in more fixed object collisions.

Many studies have found a significant relationship
between the offset of poles from the road and the safety
of highways (1, 2). Owing to the significant damage poles
could cause in fixed object collisions, design guides
require that they are placed at a certain offset from the
roadside, depending on their sizes and dimensions. This
helps in the efforts to design more forgiving highways
where a driver is given the best chance of recovery in the
case of a collision.

Developing an inventory of light poles and their loca-
tions on a highway corridor is also essential to increase
the efficiency of maintenance and street aesthetics.
Unfortunately, in current practice, inventory information
is obtained in manual inspections which are error prone
and require several man-hours of work. Obtaining such
information on a network level is therefore expensive,
and constantly updating existing records is often infeasi-
ble. In recent years, light detection and ranging (LiDAR)
technology has been considered as an alternative for the
inventory and assessment of many elements of a road’s
infrastructure (3-7).

LiDAR technology combines laser scanners, global
navigation satellite systems (GNSS) and inertial mea-
surement units (IMU) into one system to collect a 3D
point cloud of the road’s environment. In mobile laser
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scanning (MLS), the scanning system is mounted on a
truck that travels down a highway, creating a 360° vir-
tual image of the highway consisting of closely spaced
points of known positional coordinates and intensity
information. Although not useful for pole extraction
because of the low-reflective surface texture, intensity
information is commonly used to extract highly reflective
objects such as traffic signs and lane markings. The high
speeds at which data are collected enables efficient and
safe mapping of extensive areas.

Although a fair number of studies have attempted the
extraction of poles from LiDAR, the majority of those
algorithms have been developed for short, flat segments
in an urban setting. Consequently, there is a lack of stud-
ies in which pole detection is attempted on high-speed
(>80 km/h) rural highway with rolling terrain. Unlike
flat urban roads, rural highways often experience signifi-
cant variation in vertical alignments. This creates huge
challenges when extracting the nonground surface from
the point cloud while maintaining points representing
roadside poles which is an integral step to most of the
pole extraction algorithms. The high speeds at which
LiDAR data is collected in rural environment also
impacts the properties of the point cloud, including point
density. Such conditions, although challenging, are com-
monly present, and so there is a need for research to
explore the efficiency of detecting pole-like features in
such an environment.

This paper develops an algorithm using data on a 4
km rural highway corridor where significant variation in
vertical profile exists. The extraction revealed the impor-
tance of tiling LIDAR data before attempting the extrac-
tion of poles on such a large scale. Testing also revealed
that, even in such a challenging environment, pole-like
objects could be extracted and mapped at a decent level
of accuracy. The study also points out the importance of
further filtering in the post-segmentation stage when
extracting poles in a rural high-speed environment.

Literature Review

Pole-like object extraction from LiDAR in the literature
generally covers two areas: tree detection for forestry
applications and roadside furniture extraction for trans-
portation applications. The methods used in previous
studies range from simple scanline segmentation and
shape-based clustering to more complex voxel-based
approaches.

Early pole detection attempts from LiDAR used cir-
cular cross-sections (8). These methods involved taking a
horizontal slice of the point cloud, creating a correspond-
ing raster image, clustering pixels with a higher number
of points, and circle fitting. Using such approaches,
Bienert et al. reported 97.4% detection rates (8).

Golovinskiy et al. proposed an object detection
method that involved locating, segmenting, characteriz-
ing, and classifying point clusters (9). Iterative plane fit-
ting is first used to filter out points close to the ground.
Locating candidate objects then occurs using a k-nearest
neighbors (kKNN) graph and a clustering algorithm.
Segmentation was attempted by combining the kNN
graph used to connect points into foreground objects by
distance thresholds with information on the degree to
which the foreground object are connected to the back-
ground. After characterizing foreground objects, objects
are classified using random forests and support vector
machine classifiers. Testing revealed that the algorithm
was effective in locating and segmenting objects with
92% and 93% accuracy, respectively. Recognition rates
were significantly lower at 58% precision and 65%
recall.

Lehtoméki et al. proposed a scanline-based algorithm
to extract pole-like objects from mobile LiDAR data
(10). In scanline LiIDAR data, poles will exist as sweeps
(i.e., point groups) in each scanline. Point groups which
are on top of each other in adjacent scanlines are then
clustered. Clusters that constitute the same pole are
merged using principal component analysis (PCA). A
cluster is defined as part of a pole-like object if it meets
specific geometric properties. The algorithm was tested
on a 450 m straight and flat section, and the authors
reported a 77.7% detection rate and 81.0% correctness
rate. False-positives included pillars in buildings and dif-
ferent wall structures. Lamp posts were found to be the
easiest to detect, with a detection rate of 93% as com-
pared to traffic signs and tree trunks at 73.3% and
76.1%, respectively.

Pu et al. presented a method to classify MLS point
clouds into three categories: ground surface, objects on
the ground, and objects off the ground (7).
Additionally, objects on the ground are classified into
detailed groups such as traffic signs, trees, and utility
poles. A surface growing algorithm taken from
Vosselman et al. (/2) is employed to determine the points
representing the ground surface. To detect poles, the
common feature of a vertical principal axis are used.
Objects are divided into quartiles based on their height,
and the third quartile (measured from the lowest eleva-
tion point of a given cluster) is used for further analysis.
This helps omit objects such as bushes and trees when
classifying ground objects into poles and non-poles. The
authors reported an 87% success rate for detection of
pole-like objects using their procedure.

The procedure proposed by El-Halawany and Lichti
to extract poles starts by organizing the point cloud
using a KD tree data structure (/3). A 2D density-based
segmentation is performed using a density-based cluster-
ing algorithm (DBSCAN) which finds clusters of high
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density in local neighborhoods. The proximity threshold
in the DBSCAN search is defined based on a utility pole
radius of 25 cm. The output of the clustering is then used
in a vertical region-growing procedure to extract upright
objects starting from the lowest elevation object detected
in the previous step as the seed for the vertical regions.
To merge different vertical segments that are close
enough to be considered part of the same object, segment
merging is based on the horizontal distance between cen-
troids of the vertical regions grown in the previous step.
Objects are then classified using several criteria including
object height range, the surface normal direction, and
the largest normalized eigenvalue. The algorithm was
tested using data collected on three urban streets ranging
in length from 103 to 768 m, with a reported processing
time of 4-6 hours. The average detection rate was 86%
for the three segments and the accuracy was 97%.

Yan et al. proposed a four-step procedure to extract
poles and towers from LiDAR (/4). The method consists
of ground filtering, unsupervised clustering, classifica-
tion, and data cleaning. Filtering the ground surface
from the LiDAR point cloud is done based on the statis-
tical distribution of the points (assuming normality of
ground points). This allows for a statistical skewness bal-
ancing algorithm applied to the height attribute to differ-
entiate ground and nonground points. The paper then
uses DBSCAN to cluster the height-normalized non-
ground points. Each cluster is classified into one of five
types of poles based on a set of defined decision rules.
The final stage involves using least square circle fitting
algorithms on the lower 10-20% portion of the pole
structure to eliminate ground points from the extracted
pole object. The proposed algorithm was tested on an
urban site in Toronto, Ontario, resulting in a 91% detec-
tion rate for five types of light poles and towers.

Wau et al. proposed a voxel-based method for identifi-
cation of street trees from LiDAR (/5). The method con-
sists of voxelization, calculating values of voxels,
searching and marking neighborhoods, extracting poten-
tial trees, and using morphological parameters to elimi-
nating pole-like objects other than trees. It is worth
noting that the voxel layer that fell 1.2-1.4 m above the
ground was used to begin the neighborhood marking
and searching to extract trees. The proposed algorithm
was tested on two 300 m long flat urban street segments
with less than 1m difference in elevation—therefore,
height normalization with respect to a ground surface
was not required. This resulted in a completeness and
correctness of over 98% in detection.

Cabo et al. also proposed an automatic voxel-based
extraction of pole-like objects from MLS LiDAR (76).
The data are first voxelized to reduce data size for pro-
cessing. Each horizontal layer of the voxelization is ana-
lyzed and segmented separately and segments are then

merged to form the selected 3D features. The 2D analysis
is carried out to identify pole-like candidates in three
stages: segmentation of connected horizontal elements;
selection of elements greater than the maximum area cri-
teria; and selection of elements by isolation criteria. Both
the second and third stages are based on the assumptions
that poles have a relatively small cross-sectional area and
are isolated. The results provide a set of segments associ-
ated with a Z coordinate of a candidate part of a pole.
The third step involves connecting all voxel elements that
share a face, edge, or vertex among all elevation layers.
A minimum vertical height is set for connected groups to
differentiate pole-like objects. The algorithm was suc-
cessfully tested on four sites, with an average complete-
ness of 92.3% and a correctness of 83.8%.

Lehtoméki et al. proposed an automated voxel-based
method to process large MLS LiDAR point clouds and
create road environment infrastructure maps (/7). The
proposed method consists of the following workflow: iso-
lating nonground points from the point cloud, object seg-
mentation, segment classification, and object location
estimation. The authors use connected component label-
ing to perform object segmentation. Feature descriptors
calculated from voxels making up a segmented object
include local descriptor histograms, spin images, and gen-
eral shape/point distribution attributes to apply machine
learning techniques for object classification. The paper
was successful in extracting and classifying trees, lamp
posts, traffic signs, cars, pedestrians, and advertising
boards. The authors tested their algorithm on a 900 m
stretch of road in a suburban area in Espoo, Finland. In
general, the authors report between 66.7% and 94.3%
recall for the six defined object classes.

As evident in the review, there has been some progress
in efforts to extract pole-like objects from LiDAR. The
advanced techniques recently adopted have helped
increase the accuracy of the results; however, in most
existing studies testing was conducted on relatively short
and flat urban streets. Accordingly, the feasibility of
extraction on rural segments where the terrain and the
length of the highway segments pose a challenge remains
unknown. To address the aforementioned gaps, this
paper builds on research in existing studies to develop a
more robust method that can extract poles in a more
challenging rural environment with rolling terrain.
Specifically, the paper builds on the voxel-based
approach used to perform nonground extraction since it
was found to be the most effective method when dealing
with significant variations in vertical alignment common
in rural environments. To increase the efficiency of the
voxel-based nonground extraction and reduce processing
time, which is typically a challenge when dealing with
long segments, the paper introduces the concept of data
tiling, in which the point cloud is split into tiles or
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quadrants. Moreover, when segmenting the pole-like
candidates, the paper performs density-based clustering
on voxels as opposed to points. This helps address the
issue of the low density of points on some pole struc-
tures, which is expected in rural environments. In addi-
tion, this also helps reduce processing time while
maintaining the same level of accuracy.

Proposed Method

Pre-processing

Pre-processing was done in three different steps. First,
points of very low intensity were removed from the point
cloud. These low-intensity points are generally isolated
particles within the atmosphere that do not represent the
road environment. The second step of pre-processing
involves filtering out points within the point cloud that
have elevations lower than the mean elevation of the
point cloud by six standard deviations. These points are
typically a result of multipath errors in which the laser
beam is refracted by a surface and thus the range mea-
surement from source to destination is severely degraded.

The final step of pre-processing involves segmenting
the LiIDAR point cloud into square “tiles” of data. Since
the proposed procedure is intended for long LiDAR seg-
ments, it is essential that the data be segmented into
manageable portions. Each “tile” of data is chosen to
represent a 50 m” subset of the entire LIDAR dataset.
The dataset is divided into these tiles by defining a grid
of 50 m cells based on the dataset’s coordinate extents.
Points are then grouped into each “tile” using a 3D his-
togram counting algorithm (/8). This algorithm takes
three vectors delineating each direction into N point
groups and returns the 7, j, k indices that correspond to a
specific data “tile” for each point.

Stage A: Voxelization

The first stage of the processing pipeline involves voxeli-
zation of each data tile in the point cloud. Voxelization
is the process of discretizing the LIDAR point cloud into
three-dimensional voxels of a certain size similar to two-
dimensional pixels in a normal image.

Let v(i, j, k) denote a voxel and v({, J, k) denote all
voxels in layer k. If V represents the voxel grid system
consisting of K layers, then V can be defined as the union
of all voxel layers:

v=J* (1)

Unlike data tiling discussed above, the voxelization of
each point in the point cloud is performed based on the
spatial coordinates of the point as illustrated in Figure 1.
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Figure 1. Voxel representation (/9).

A point P(x, y, z) is assigned to a voxel v(i, j, k) as fol-
lows. If Ax, Ay, and Az denote the dimensions of a single
voxel cell (v) in the x, y, and z directions and x,, y,, and
zy denote the origin of the voxel grid (V), then the ID of
the voxel, v(i, j, k), in which the point P(x, y, z) falls can
be computed as follows:

. int(x —xp)
T @
_ int(y —y)

- TO (3)
_int(z — zp)
. @

The actual voxelization of each data tile is based on the
same three-dimensional histogram counting algorithm
(18). The algorithm works by classifying points into bins
based on the preset dimensions for individual voxel cells
(v) and information on the size of the entire voxel
grid (V).

The dimensions of the voxel are user-defined. For best
overall results, it is recommended that voxel dimensions
be defined based on the laser scanner properties. Since
the data scanned in this study were done in scanlines that
are approximately 20 cm apart, a 20 cm cell size for vox-
elization was used. This also ensures that points scanned
from adjacent scanlines would fall in neighboring voxels,
which is important when performing the connected com-
ponents labeling.

Stage B: Ground vs Nonground Filtering

After voxelization occurs, all unique foreground voxels
(i.e., voxels containing points) in a certain voxel layer (k)
are found with their corresponding related points and a
set of scalar and distributional geometric shape descrip-
tors are generated. The attributes assigned to each voxel
consist of a scalar geometric center and principal
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components based on the distribution of points within a
local neighborhood of the voxel. The local neighborhood
is defined as the 26 neighbors of a voxel in three dimen-
sions. The principal components are calculated using
PCA, specifically by using singular value decomposition
(SVD) to find the principal directions and their eigenva-
lues. Since the SVD approach requires a large enough
sample, only voxels containing more than three points
were considered in this step.

The PCA attributes computed for each voxel include
measures of linearity, flatness, and angular measures
with respect to the Cartesian directions. Voxel linearity
and flatness can be surmised from the eigenvalues corre-
sponding to the principal directions (i.e., eigenvectors)
since the eigenvalues can be seen as a measure of the var-
iance along cach principal direction. Linearity can be
defined by dividing the largest principal eigenvalue by
the sum of the eigenvalue of the principal directions, as
in Equation 5. Similarly, flatness can be defined by
dividing the smallest principal eigenvalue (A) by the sum
of the eigenvalues of all principal directions, as in
Equation 6:

. . A
L ty= ——— S5
inearity IV (5)
A3
Flat = 6
Rt WSS Y (6)

The angle of the component can then be computed as
follows. If V' denotes an eigenvector and U, denotes the
Cartesian Z unit vector, then the following equations are
used to compute the angular measures:

Angle of first principal component w.r.t

7
Uz = arctan(||Vy X Uz||, V1 - Uy) @)

Angle of third principal component w.r.t

8
Uz = arctan(||V3 X Uz||, Vs - Uz) ( )

Both attributes of flatness and angle of the third eigen-
vector with the unit z vector help filter voxels that are
expected to have high flatness and close to vertical third
principal component (i.e., voxels representing the ground
surface).

Once ground surface voxels are filtered out, all
remaining voxels will then represent nonground objects.
Data points must be voxelized into a small enough voxel
size for the third principal component of potential road
segments to be close to vertical, especially considering
many rural highways have large vertical curves.
Therefore, the choice of a 20 cm voxel size.

Stage C: Connected Component Labeling

After voxelization and ground filtering, a binary 3D
image of the nonground voxels within each data tile is
generated with foreground voxels represented as value
“1” and background voxels represented as value “07”.
Connected component labeling (CCL) is then performed.
This involves placing voxels within close proximity under
a single label (see Figure 2). In this paper, CCL is done
based on 26-connectivity, which means that, for each
central voxel, adjacent voxels in the 3D space (up to the
26 neighbors) are considered when grouping voxels.
Once connected components are found, they are
reported as potential objects in each voxel layer. These
potential clusters of objects are typically only part of a
larger object. For instance, different parts of tall objects
such as poles could fall in voxel layers that are not adja-
cent and thus segment merging is required. Two-dimen-
sional DBSCAN clustering is used to perform segment
merging on cluster centroids. This filter ensures that
changes in the 2D distance between cluster centroids in

LA Y AR A 4

y AR AP 4
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6-Neighborhood
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Figure 2. Central voxel neighborhood (in this paper, CCL is based on 26-neighborhood connectivity) (20).
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adjacent voxel layers are not significant, while at the
same time merging clusters in different voxel layers with
insignificant changes in 2D distance. Employing these
two criteria, segment merging is performed which enables
merged segments to be representative of meaningful
physical objects in the road environment.

Stage D: Pole Identification and Classification

This stage involves the computation of shape descriptors
for each of the merged segments (i.e., objects). These
descriptors are then used to further classify detected
objects into poles and non-poles. In addition to the gen-
eral geometric descriptors such as number of points and
the height of objects, PCA is used to compute the same
attributes as for the individual voxels but now on seg-
mented objects. This includes linearity, flatness, and two
angle measures. Streetlight and utility poles are thin ver-
tical objects with a distinct range in the first principal
component (i.e., high linearity) and first and third princi-
pal component angles with respect to the Cartesian z
direction. Specifically, the following decision rules were
used in the classification:

For east two-thirds of the test segment:

linearity between 0.7 and 0.8

flatness greater than 0.975

surface normal angle between 85° and 95°
first principal component angle less than 75°

bl o M

For west one-third of the test segments:

1. linearity between 0.8 and 0.9
2. flatness greater than 0.9
3. surface normal angle between 65° and 95°

It is worth noting here that different filters for different
portions of the 4 km test segment were used since parts
of the segment included poles with incomplete structure
(this is discussed further in the Results and Discussion
section).

Case Study

The algorithm developed in this paper was tested on
LiDAR data collected on a 4 km segment along Highway
20 in Alberta, Canada. The test segment in this paper
was much longer (4 km) than in previous studies, and
included high variation in vertical alignment (Az = 796
m). A longer segment length with varying vertical align-
ment was purposely chosen to test the algorithm since it
represents a realistic rural setting. The next two

paragraphs provide more details on LiDAR data collec-
tion procedure and the test segment.

LiDAR Data

LiDAR data were collected using REIGL’s VMX 450
Laser Scanning System. The RIEGL VMX-450 system
uses two VQ-450 scanners along with the GNSS/IMU
units to collect the data. The laser scanners are symme-
trically configured on the left and right sides, pointing
toward the rear of the vehicle at a heading angle of
approximately 145°. The VQ-450 scanner has a scan rate
reaching 1.1 million points per second and a speed of
400 lines per second (/3). The density of the points on a
scanned object depends on the range, and the speed of
the data collection truck; provincial surveys conducted
at 90 km/h result in point densities on the pavement sur-
face of 150-1000 points/m? (14).

Test Segment

The analyzed portion of Highway 20 is an undivided high-
way located close to Sylvan Lake (west of Red Deer). A
portion of the test segment is shown in Figure 3. The
speed limit on the segment is 100 km/h; however, the
speed does drop for a 1 km portion of the segment that
runs close to the town of Sylvan Lake. Vegetation along
the sides of the road is moderate. In addition to the dras-
tic change in vertical alignment along the 4 km section,
there is also a reverse horizontal curve on the segment
and a rural intersection. Ground truth data used in the
validation of the extracted information was collected
through manual exploration of the test segment.

Results and Discussion

Before presenting the results, it is worth emphasizing
that the test segment used in this paper was 4 km long
with rolling terrain. The length of the segment increases
the number of nonground objects from which poles are
filtered. On the segment tested in this study, the number
of objects detected before classification was 24,767 non-
ground objects. This includes signs, trees, building
facades, vegetation, and poles. Out of those 24,767, only
41 poles existed; as a result, the likelihood of other
objects having the same properties as poles is much
higher when compared to analyzing a short 100 m seg-
ment where fewer objects exist. Moreover, the rolling ter-
rain on the test segment causes a difference in elevation
of 796 m. This makes extracting the nonground surface
using voxelization of the point cloud extremely challen-
ging. Despite that, nonground classification was highly
accurate.



Gargoum et al

Figure 3. Highway 20.
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Figure 4. LiDAR points representing detected poles.

Figure 4 shows points in the LIDAR point cloud repre- the detected poles and the ground truth for a 1 km test seg-
senting the detected poles. Figure 5a shows a map of all ment that runs adjacent to Sylvan Lake. It is noticeable
the detected poles along the 4 km segment with the ground from the figures that the algorithm was more effective in
truth shown in Figure 5b. Similarly, Figures 5¢ and d show classifying poles in the section closer to Sylvan Lake town.
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Figure 5. Pole distribution along the test segment: (a) ground truth (4 km segment); (b) true-positives (4 km segment); (c) ground truth
(I km segment—low speed); (d) true-positives (I km segment—low speed).

The extracted information can be mapped on the high-
way segment with pinpoint accuracy, which facilitates
measuring the density of light poles on a road segment
along with their offsets from the road. These two critical
performance measures were found to be the most signifi-
cant factors in studies that analyzed the effects of lighting
standards on safety.

To numerically assess the validity of the results, three
metrics were calculated. The metrics were precision,
detection rate, and accuracy. These were calculated as
follows:

.. TP
Precision = P + P 9)
. TP
Detection rate = TP T EN (10)
TP + TN

(11)

ACCUTACY = T T EN T FP + TN
where TP and TN denote the number of true-positives
(actual poles detected) and the true-negatives (actual
non-poles detected). FP denotes the number of false-
positives (i.e., the number of objects detected as poles
which were not actually poles) and FN denotes the

number of false-negatives (i.e., the number of objects
that were actually poles but that were not detected by
the algorithm as poles).

Accuracy measures how effective the algorithm is in the
valid classification of both true-positives and true-nega-
tives. This measure is also known as quality and provides
a compound performance metric that balances detection
rate and precision (27). Detection rate, also known as
completeness, measures how effective the algorithm is in
the valid classification of true-positives only. Finally, pre-
cision, also known as correctness, measures how successful
the algorithm is in applying the classification filters.

As evident in the table, both precision and accuracy
are relatively high for both the entire segment and the
section closer to Sylvan Lake, which points to the robust-
ness of the proposed algorithm in extracting over-ground
objects. The detection rate, however, is high for the por-
tion close to Sylvan Lake but relatively low for the entire
segment. This indicates that the classification procedure
is not as efficient as the extraction (i.e., poles are being
detected but some poles are getting misclassified as other
objects). This is mainly caused by two things, both of
which have been reported in previous research (22). First,
there are some cases in which the poles are too close to
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Table I. Result Validity Assessment

Sylvan Lake
Metric 4 km segment (1 km segment)
Precision (%) 68 78.6
Detection rate (%) 49 78.6
Accuracy (%) 98 954

other objects such as vegetation (bushes) or signs. This
results in mixed pixels between the two objects (the pole
and other objects) and, as a result, the objects get seg-
mented into one object in the CCL process.

The other reason some poles were misclassified is
because portions of the pole structure were missing (i.e.,
the pole structure was incomplete). The incomplete struc-
ture of poles causes the CCL to segment the pole into
two objects. The CCL works by segmenting adjacent
foreground voxels into a single object; however, when
one of the adjacent voxels does not contain points, this
leads to the voxel groups being classified as two different
objects. This causes an issue when classifying pole struc-
tures since a pole that is divided between two segments or
only has the top portion detected does not have the same
geometric properties as a complete pole that belongs to a
single cluster.

Although DBSCAN clustering was used in an attempt
to regroup those unconnected segments, this was not
always possible. This issue was more prevalent on the
portion of the highway further away from the town of
Sylvan Lake, as evident in the detection rates shown in
Table 1. Therefore, it could be a matter of the data col-
lection truck traveling at higher speeds away from the
city bounds causing a reduction in point density. Object
occlusion could also be a reason why some pole struc-
tures were incomplete. To minimize the effects of this,
different filtering thresholds were used to classify poles
in different regions of the test segment. The incomplete
structure of a pole might also affect the ability to mea-
sure dimensions of the detected pole, although this is
beyond the scope of this paper.

Conclusions and Future Research

This paper proposes an algorithm to automatically
extract and classify pole-like objects using LiIDAR point
cloud data on rural highways with rolling terrain. The
algorithm involves breaking the data down into manage-
able data tiles. Each data tile is then voxelized and voxel
attributes are used to classify the point cloud into ground
and nonground points. After voxelization, CCL is used
to segment different parts of the nonground surface into
potential objects. Further clustering of objects is then
done and the objects are classified into poles and non-

poles based on their geometric attributes. The proposed
algorithm is tested on a 4 km rural highway segment in
Alberta, Canada. In general, the results were accurate;
however, misclassification of poles did exist owing to low
point density and pole occlusion by other objects. This
paper illustrates the importance of accounting for the
road type and its terrain when extracting information
from LiDAR. The results also indicate that more robust
segmentation may be required when extracting poles in a
rural high-speed environment to account for the lower
point density caused by the high data collection speeds.
To address this issue, future research might consider
employing machine learning techniques in the segmenta-
tion stage. Similarly, ellipsoidal region-growing algo-
rithms could also help overcome the limitations
associated with the CCL when dealing with discontinuity
in pole structure. The proposed procedure could also be
replicated on a segment where LiDAR is collected using
a phase-based scanner instead of the time-of-flight scan-
ner used in this paper. Phase-based scanners often result
in a more dense point cloud, albeit the range of the data
collection is shorter (23). This could help increase the
density of points on the pole-like objects.
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